

FOM Hochschule für Oekonomie & Management Studienzentrum Düsseldorf

Exposé for the bachelorthesis

in the study program Wirtschaftsinformatik - Business Information Systems Bachelor of Science (B.Sc.)

about the topic

Analysis of the potential of AI-tools in software development

written by Frederik Reiff

First reviewerProf. Dr. Rüdiger BuchkremerMatriculation number544582Date of submission2023-08-31

Contents

A	bbreviations	III
1	Introduction	1
2	Alternative titles and topic selection	2
3	Research questions and objectives	2
4	Methods and approach	3
5	Preliminary structure of the bachelor thesis	3
6	Literature review	4
7	Thesis timeline	11
Bi	bliography and sources	VI

Abbreviations

 ${\small SWOT-Analysis}\quad {\small Strengths, weaknesses, oppotrunities and threats analysis}$

1 Introduction

Artificial intelligence is currently considered one of the most important innovations that are being worked on worldwide.¹ It is without question that the software development market has become one of the biggest ever existing with revenues of more than 420 billion US dollars generated by software publishers in 2021.² 33 percent of the US's top 15 largest companies by revenue are directly involved in software development.³ Eventhough the software industry is known for their high margins, the costs in 2021 sum up to round about 280 billion, leaving only 144 billion in returns.⁴

Beside the software development market growing rapidly over the last years, the AI market experienced a massive rise of interest and investments in the beginning of 2023. This rise can be explained by the technology called ChatGPT disrupting the market and creating exposure for jobs in a wide variety of industries. The technology however did not only create exposures, it also brought up the question of how AI may change and improve certain fields of industries, one of them being the software development market.⁵

This brings up the question of how AI-tools built for software development may change the development process and what chances as well as risks they bring with them when being used to create software. In greater detail, it is in question of how much AI can take over in the process whether it's just writing single lines of code per instruction or creating whole software ecosystems by a non-technical user explaining his requirements.

It comes up to question what skills an artifical intelligence can adopt and maybe even take to a next level in comparison to skilled software developers. Especially the soft skills involve social behavior for communication and collaboration which an AI has to master in order to perform in the software development industry.

When analysing the potential of AI-tools in software development these questions have to be answered. To do so, the bachelor-thesis will focus on the quality an AI can provide and the skills it can adopt.

 $^{^{1}\}mathrm{cf.}$ Ulrich and Frank, 2021, p. 2152f.

²cf. Vailshery, 2022.

³cf. Alda and Biagi, 2022.

⁴cf. Watson, 2023.

⁵cf. Alda and Biagi, 2023.

2 Alternative titles and topic selection

AI-tools used in software development are the primary topic for the thesis. They however can be adopted to take a deeper look into different aspects. Hence, there are some alternative titles that were taken into consideration when defining the scope of the bachelor-thesis:

- Strengths and weaknesses when using AI while developing software
- Analysis of AI's capabilities when designing a software architecture
- Evaluation of code integrity risks when using SaaS-AI tools
- Marketanalysis of low-code software creation tools using AI

All the listed topics take a look at AI tools when either creating or designing a software. The key difference is the perspective they are using, be it either for the companies risk management or the requesters of new software or of course the software developers themselves. When reviewing the literature and evaluation of the approach on each of the topics, the thesis-topic "Analysis of the potential of AI-tools in software development" was choosen. This topic is specialised enough to make use of the existing literature while being holistic enough to cover multiple subtopics like architecture, development efficiency and user experience.

3 Research questions and objectives

In order to approach the topic scientifically, research questions have to be defined, the main research objective is the analysis of the potential of AI-tools in software development. To specify this objective, the following sub-questions are to be answered in the thesis:

- How do different user groups, including software developers, testers, and inexperienced users, perceive and accept AI-tools in software development?
- Of what quality is the provided software code in different testing scenarios?
- Which roles in the software development process can be supported or replaced by AI-tools?

With the help of these questions, the topic can be answered sufficiently so the main objectives are reached. One of the main objectives is to find out wether the technology is user friendls enough. Additionally, it should be known if the tools are really helpful in the reality and for which roles.

4 Methods and approach

To reach the set research objectives for the bachelor thesis, there will be multiple methods used. The primary research methods will be the conducting of a technology acceptance model and the fulfillment of a SWOT analysis. In addition the literature search is also part of the thesis. In greater detail, the methods are defined as follows:

- To find suitable literature, the literature search will be performed as described by a publiction from Mr. Brocke. This method will be used extensivly for the thesis and is also used in this exposé in a smaller form.⁶
- As AI-tools are new to the most people, it is especially interesting to find out whether such tools will be accepted by potential users. For this the technology acceptance model by Fred Davis will be used.⁷
- To identify the strengths and weaknesses of Github copilot, a SWOT analysis will be conducted to take a look at the tools current features and evaluate the potential it could create.

5 Preliminary structure of the bachelor thesis

The thesis will be splitted up into four major parts, the introduction, the fundamentals, the analysis itself and the conclusion. The introduction will highlight the problem and will list the research questions and the papers goal. The introduction are followed by the fundamentels in which the AI-tools are explained, it is highlighted how their integration is working. Additionally, the used scientif model will be explained. Once the fundamentals have been laid, the analysis will continue. The analysis is divided into three sub-analysis, one being the categorisation of Github Copilot in the technology acceptance model. Next Github Copilots quality will be tested with pre-defined test cases. To round the analysis up, a typical SWOT-Analysis will be conducted to identify current strengths and weaknesses and future opportunities and threats. The expected pages per topic are listed below:

 $^{^{6}}$ cf. Brocke et al., 2009.

⁷cf. Davis, 1985.

Chapter	Number
-	of pages
I. Abbreviations	
II. List of figures	
III. List of tables	
1. Abstract	1 page
2. Introduction	6 pages
2.1 Motivation	2 pages
2.2 Problem statement and goal setting	1 page
2.3 Research questions and approach	2 pages
2.4 Structure of the thesis	1 page
3. Fundamentals	4 pages
3.1 ChatGPT	1 page
3.2 Visual Studio Code	1 page
3.3 Github Copilot	1 page
3.4 Technology acceptance model	1 page
4. Analysis of Github Copilot in software development	16 pages
4.1 Technology acceptance analysis of Github Copilot	3 pages
4.2 Performance of Github Copilot against defined test cases	5 pages
4.3 Strengths and weaknesses of Github Copilot	4 pages
4.4 Oppotunities and threats of Github Copilot	3 pages
4.5 Analysis results and summary	1 pages
5. Critical assessment and conclusion of AI's use in the	2 pages
software development process	

4

6 Literature review

For the bachelor thesis there is literature needed that fulfills certain scientifical quality criterias. In order to pre-evaluate the literature, a corresponding literature will be conducted. For this, a modified review method from Mr. Brocke will be used.⁸

In order to find suitable literature, the following four plattforms for literature search will be used:

- Google Scholar (https://scholar.google.com)
- EBSCO Discovery Service (https://eds.s.ebscohost.com)

- ScienceDirect (https://www.sciencedirect.com)
- Springer Link (https://link.springer.com)
- Emerald Insights (https://www.emerald.com/insight/)
- Wiley Online Library (https://onlinelibrary.wiley.com/)

With the help of pre-defined search queries, fitting literature should be found on these plattforms. For this bachelor thesis, the following search strings were developed:

• A: "development" AND ("AI" OR "Artificial Intelligence" OR "ChatGPT" OR "language model")

The goal of this query is to find holistic literature in regards to software development with the help of artificial intelligence.

- B: "Github Copilot" AND ("AI" OR "Artificial Intelligence" OR "ChatGPT" OR "language model") This query focuses on Github Copilot as an AI tool which is relevant for the SWOT-analysis.
- C: "Github Copilot" AND ("accuracy" OR "efficiency" OR "success rate") This query searches for the copilot tool and hints towards results and accuarcy ratings which is crucial to bring in when evaluating the self-conducted test cases against other test case results.

To evaluate whether the literature found on the plattforms with the given search query is sufficient for using in scientific papers, their H and Q indexes will be used. Documents having an H index over 50 are highlighted.

Search	Search	Journal	н	Q	Citation	
Portal	Query					
Science Direct	A	Journal of Hospitality, Leisure, Sport and Tourism Education	34	2	 Keiper, M. C., Fried, G., Lupinek, J., & Nordstrom, H. (2023). Artificial in- telligence in sport management educa- tion: Playing the AI game with Chat- GPT. Journal of Hospitality, Leisure, Sport & Tourism Education, 33, 100456. doi.org/10.1016/j.jhlste.2023.100456 	
Science Direct	A	Nurse Ed- ucation Today	92	1	Choi, E. P. H., Lee, J. J., Ho, M H., Kwok, J. Y. Y., & Lok, K. Y. W. (2023). Chatting or cheating? The im- pacts of ChatGPT and other artificial in- telligence language models on nurse educa- tion. Nurse Education Today, 125, 105796. doi.org/10.1016/j.nedt.2023.105796	
Science Direct	A	Joint Bone Spine	88	2	Thiébaut, R., Hejblum, B., Mougin, F., Tzourio, C., & Richert, L. (2023). Chat- GPT and beyond with artificial intel- ligence (AI) in health: Lessons to be learned. Joint Bone Spine, 90(5), 105607. doi.org/10.1016/j.jbspin.2023.105607	
Science Direct	A	Journal of Pediatric Surgery	137	1	 Xiao, D., Meyers, P., Upperman, J. S., & Robinson, J. R. (2023). Revolutionizing Healthcare with ChatGPT: An Early Exploration of an AI Language Model's Impact on Medicine at Large and its Role in Pediatric Surgery. Journal of Pediatric Surgery. doi.org/10.1016/J.JPEDSURG.2023.07.008 	
Science Direct	A	Molecular Therapy - Nucleic Acids	84	1	Chatterjee, S., Bhattacharya, M., Lee, S S., & Chakraborty, C. (2023). Can ar- tificial intelligence-strengthened ChatGPT or other large language models trans- form nucleic acid research? Molecular Therapy - Nucleic Acids, 33, 205–207. doi.org/10.1016/j.omtn.2023.06.019	
Science Direct	A	Journal Francais d'Ophtal- mologie	33	3	Panthier, C., & Gatinel, D. (2023). Success of ChatGPT, an AI language model, in taking the French language version of the European Board of Ophthalmol- ogy examination: A novel approach to medical knowledge assessment. Journal Français d'Ophtalmologie, 46(7), 706–711. doi.org/10.1016/j.jfo.2023.05.006	

Search	Search	Journal	Н	Q	Citation
Portal	Query				
Google Scholar Google	A	Journal of Physics: Conference Series International	91	4	 Xie, M. (2019, April). Development of artificial intelligence and effects on financial system. In Journal of Physics: Conference Series (Vol. 1187, No. 3, p. 032084). IOP Publishing. Alexopoulos, K., Nikolakis, N., & Chryster Physics.
Scholar		Journal of Computer Integrated Manufac- turing			solouris, G. (2020). Digital twin-driven supervised machine learning for the de- velopment of artificial intelligence appli- cations in manufacturing. International Journal of Computer Integrated Manufac- turing, 33(5), 429-439.
Google Scholar	A	2016 In- ternational Confer- ence on Information Science and Commu- nications Technolo- gies	6	_	 Raximov, N., Primqulov, O., & Daminova, B. (2021, November). Basic concepts and stages of research development on artificial intelligence. In 2021 International Confer- ence on Information Science and Commu- nications Technologies (ICISCT) (pp. 1-4). IEEE.
Google Scholar	A	Dento- maxillo- facial Radiology	82	1	Putra, R. H., Doi, C., Yoda, N., As- tuti, E. R., & Sasaki, K. (2022). Cur- rent applications and development of artifi- cial intelligence for digital dental radiogra- phy. Dentomaxillofacial Radiology, 51(1), 20210197.
Google Scholar	A	International Conference on Soft- ware, Telecom- munica- tions and Computer Networks, SoftCOM	7	-	Lwakatare, L. E., Crnkovic, I., & Bosch, J. (2020, September). DevOps for AI–Challenges in Development of AI- enabled Applications. In 2020 interna- tional conference on software, telecommu- nications and computer networks (Soft- COM) (pp. 1-6). IEEE.
Springer Link	A	International journal of oral science	58	1	Huang, H., Zheng, O., Wang, D. et al. ChatGPT for shaping the future of den- tistry: the potential of multi-modal large language model. Int J Oral Sci 15, 29 (2023). doi.org/10.1038/s41368-023- 00239-y

Search Search		Journal	Н	Q	Citation	
Portal	Query					
Springer Link	A	Education and In- formation Technolo- gies	61	1	Jeon, J., Lee, S. Large language models in education: A focus on the complement tary relationship between human teachers and ChatGPT. Educ Inf Technol (2023) doi.org/10.1007/s10639-023-11834-1	
Springer Link	А	European Journal of Nuclear Medicine and Molec- ular Imag- ing	177	1	Alberts, I., Mercolli, L., Pyka, T. et al. Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be?. Eur J Nucl Med Mol Imaging 50, 1549–1552 (2023) doi.org/10.1007/s00259-023-06172-w	
Springer Link	А	Annals of Biomedical Engineering	150	2	Lu, Y., Wu, H., Qi, S. et al. Artificial Intelligence in Intensive Care Medicine: Toward a ChatGPT/GPT-4 Way?. Ann Biomed Eng 51, 1898–1903 (2023). doi.org/10.1007/s10439-023-03234-w	
EBSCO Dis- covery Service	А	Journal of Advertising	126	1	Huh, Jisu, Michelle R. Nelson, and Cristel Antonia Russell. 2023. "Chat- GPT, AI Advertising, and Advertis- ing Research and Education." Jour- nal of Advertising 52 (4): 477–82. doi.org/10.1080/00913367.2023.2227013.	
Emerald Insights	В	Journal of Business Strategy	45	2	Ritala, P., Ruokonen, M. and Ra- maul, L. (2023), "Transforming bound- aries: how does ChatGPT change knowl- edge work?", Journal of Business Strategy, Vol. ahead-of-print No. ahead-of-print. doi.org/10.1108/JBS-05-2023-0094	
Emerald Insights	В	RAUSP Man- agement Journal	13	2	Isabella, G., Almeida, M.I.S.d. and Mazzon, J.A. (2023), "Editorial: One- way road: the impact of artificial intelli- gence on the development of knowledge in management", RAUSP Management Jour- nal, Vol. 58 No. 3, pp. 249-255. doi.org/10.1108/RAUSP-07-2023-273	
Wiley Online Library	В	Journal of Creative Behavior	64	1	 Vinchon, F., Lubart, T., Bartolotta, S., Gironnay, V., Botella, M., Bourgeois, S., Burkhardt, JM., Bonnardel, N., CORAZZA, G. E., Glaveanu, V., Hanson, M. H., Ivcevic, Z., Karwowski, M., Kaufman, J. C., Okada, T., Reiter-Palmon, R., & Gaggioli, A. (2023). Artificial Intelligence & Creativity: A manifesto for collaboration. doi.org/10.31234/osf.io/ukqc9 	

Search	Search Journal H Q Citation		Citation			
Portal	Query					
Google Scholar	В	Journal of Sys- tems and Software	123	1	Dakhel, A. M., Majdinasab, V., Nikanjam,A., Khomh, F., Desmarais, M. C., & Jiang,Z. M. J. (2023). Github copilot ai pair programmer: Asset or liability?. Journal ofSystems and Software, 203, 111734.	
Google Scholar	В	IEEE In- ternational Working Conference on Mining Software Reposito- ries	53	-	Nguyen, N., & Nadi, S. (2022, May). An empirical evaluation of GitHub copilot's code suggestions. In Proceedings of the 19th International Conference on Mining Software Repositories (pp. 1-5).	
EBSCO Dis- covery Service	В	Commun- ications of the ACM	230	1	Denning, P. J. (2023). The Profession of IT: Can Generative AI Bots Be Trusted? Communications of the ACM, 66(6), 24–27. doi.org/10.1145/3592981	
EBSCO Dis- covery Service	В	Entropy	91	2	Wong, MF., Guo, S., Hang, CN., Ho, SW., & Tan, CW. (2023). Natural Language Generation and Understanding of Big Code for AI-Assisted Program- ming: A Review. Entropy, 25(6), 888. doi.org/10.3390/e25060888	
EBSCO Dis- covery Service	В	Software and Sys- tems Mod- eling	55	2	Cámara, J., Troya, J., Burgueño, L., & Vallecillo, A. (2023). On the assessment of generative AI in modeling tasks: an ex- perience report with ChatGPT and UML. Software and Systems Modeling, 1–13. doi.org/10.1007/s10270-023-01105-5	
EBSCO Dis- covery Service	В	PLoS Com- putational Biology	205	1	Lubiana, T., Lopes, R., Medeiros, P., Silva, J. C., Goncalves, A. N. A., Maracaja- Coutinho, V., & Nakaya, H. I. (2023). Ten quick tips for harnessing the power of ChatGPT in computational biology. PLoS Computational Biology, 19(9), 1–9. doi.org/10.1371/journal.pcbi.1011319	

Search	Search	Journal	Η	Q	Citation	
Portal	Query					
Science Direct	С	Expert Systems with Appli- cations	249	1	Liguori, P., Improta, C., Natella, R., Cu- kic, B., & Cotroneo, D. (2023). Who evaluates the evaluators? On auto- matic metrics for assessing AI-based of- fensive code generators. Expert Sys- tems with Applications, 225, 120073. doi.org/10.1016/j.eswa.2023.120073	
Science Direct	С	International Journal of Research in Marketing	115	1	Peres, R., Schreier, M., Schweidel, D., & Sorescu, A. (2023). On ChatGPT and beyond: How generative artificial in- telligence may affect research, teaching, and practice. International Journal of Research in Marketing, 40(2), 269–275. doi.org/10.1016/j.ijresmar.2023.03.001	
Springer Link	С	International Journal on Software Tools for Technology Transfer	57	3	Jensen, K., & Podelski, A. (2006). Tools and Algorithms for the Construction and Analysis of Systems. International Journal on Software Tools for Technology Transfer, 8, 177-179.	
EBSCO Dis- covery Service	С	Commun- ications of the ACM	230	1	BIRD, C., FORD, D., ZIMMERMANN, T., FORSGREN, N., KALLIAMVAKOU, E., LOWDERMILK, T., & GAZIT, I. (2023). Taking Flight with Copilot. Com- munications of the ACM, 66(6), 56–62. doi.org/10.1145/3589996	
EBSCO Dis- covery Service	С	Commun- ications of the ACM	230	1	Denning, P. J. (2023). The Profession of IT: Can Generative AI Bots Be Trusted? Communications of the ACM, 66(6), 24–27. doi.org/10.1145/3592981	
EBSCO Dis- covery Service	С	Empirical Software Engineering	85	1	Mastropaolo, A., Aghajani, E., Pascarella, L., & Bavota, G. (2023). Automated vari- able renaming: are we there yet? Em- pirical Software Engineering, 28(2), 1–26. doi.org/10.1007/s10664-022-10274-8	

7 Thesis timeline

	Sep	Oct	Nov	Dec
Preparation	Sep 20 J Official Registr Sep 20 – Sep 27 Det Sep 20 - Oct 4 Sep 21 J Alignment w	ermination of Scope Literature analysis		
Writing	Oct 5 - 0			s luation of Results
Review			Dec 1 - Dec 15 Dec 1 - Dec 15	Content Check Language Check
Buffer				Dec 15 - Dec 20 Buffer

Figure 1: Timeline

The thesis timeline is precisely planned so that the thesis is finished on time and the current progress can be tracked. After registration, the scope will get defined and the literature will be worked out. After the preparations, the writing itself will start. First the foundations will be established to then further perform the technology acceptance analysis. This then is followed with the development and execution of test cases which is needed to next make the SWOT-analysis. Once the major parts are done, the evaluation including the most important results will be written. To fully finish the work on the thesis, the content and language will be checked. Once done, the thesis is ready for being handed in.

Bibliography and sources

- Alda, M., & Biagi, L. (2022). Top 100 companies: United states. https://www. statista.com/study/40932/top-100-companies-united-states/
- Alda, M., & Biagi, L. (2023). Insights compass 2023 unleashing artificial intelligence's true potential. https://www.statista.com/study/138971/insightscompass-2023-unleashing-artificial-intelligences-true-potential/
- Brocke, J. v., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the giant: On the importance of rigour in documenting the literature search process.
- Davis, F. D. (1985). A technology acceptance model for empirically testing new enduser information systems: Theory and results (Doctoral dissertation). Massachusetts Institute of Technology.
- Ulrich, P., & Frank, V. (2021). Relevance and adoption of ai technologies in german smes – results from survey-based research [Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES2021]. Procedia Computer Science, 192, 2152–2159. https: //doi.org/https://doi.org/10.1016/j.procs.2021.08.228
- Vailshery, L. S. (2022). Revenue u.s. software publishers 2021. https://www.statista. com/statistics/184124/estimated-revenue-of-us-software-publishers-since-2005/
- Watson, A. (2023). Expenses of u.s. software publishers 2021. https://www.statista. com/statistics/185275/estimated-expenses-of-us-software-publishers-since-2005/